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Abstract

This paper develops a continuum theory for the elastic–viscoplastic deformation of amorphous solids such as

polymeric and metallic glasses. Introducing an internal-state variable that represents the local free-volume associated

with certain metastable states, we are able to capture the highly non-linear stress–strain behavior that precedes the

yield-peak and gives rise to post-yield strain softening. Our theory explicitly accounts for the dependence of the

Helmholtz free energy on the plastic deformation in a thermodynamically consistent manner. This dependence leads

directly to a backstress in the underlying flow rule, and allows us to model the rapid strain-hardening response after the

initial yield-drop in monotonic deformations, as well as the Bauschinger-type reverse-yielding phenomena typically

observed in amorphous polymeric solids upon unloading after large plastic deformations. We have implemented a

special set of constitutive equations resulting from the general theory in a finite-element computer program. Using this

finite-element program, we apply the specialized equations to model the large-deformation response of the amorphous

polymeric solid polycarbonate, at ambient temperature and pressure. We show numerical results to some representative

problems, and compare them against corresponding results from physical experiments.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Under certain conditions many solids appear in a disordered form; such solids are referred to as
amorphous or glassy. Important examples of amorphous solids are polymeric (molecular) glasses and

metallic (atomic) glasses. While there are important differences in the microstructural mechanisms leading
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to plastic or inelastic deformations of polymeric and metallic amorphous solids, 2 it is possible to develop a

reasonably general constitutive framework for the inelastic deformation of such amorphous solids at the

macroscopic level. The purpose of this paper is to formulate a macroscopic theory for the elastic–visco-

plastic deformation of an amorphous solid under isothermal conditions below its glass transition tempe-
rature.

A significant advance in modeling the plastic deformation of amorphous polymers has been made by

Parks, Argon, Boyce, Arruda, and their co-workers (e.g. Parks et al., 1985; Boyce et al., 1988; Arruda and

Boyce, 1993b), and by Wu and Van der Giessen (1993). Our theory is based on physical ideas contained in

these models, and, following these authors, we utilize the Kr€ooner–Lee decomposition, F ¼ FeFp, of the

deformation gradient F into elastic and plastic parts, Fe and Fp (Kroner, 1960; Lee, 1969). Unfortunately, in

their formulation the foregoing authors make the a priori assumption that Fe be symmetric, an assumption

that rules out a simple prescription for rotating the body rigidly and consequently is compatible with frame-
indifference only with non-standard transformation rules that confuse frame-indifference with material

symmetry; 3 for that reason we do not use this hypothesis in the development of our theory.

A key feature controlling the initial plastic deformation of amorphous materials is known to be the

evolution of the local free-volume associated with certain metastable states, and it is commonly believed

that for glassy polymers the evolution of this free-volume is the major reason for the highly non-linear

stress–strain behavior that precedes the yield-peak and gives rise to post-yield strain softening. Metallic

glasses also show a ‘‘yield-drop’’ specially at high temperatures (e.g. Hey et al., 1998) In our theory, we

represent this local free-volume by an internal-state variable g. 4

An important feature of our theory is the assumption that the (Helmholtz) free energy depends on Fp, an

assumption that leads directly to a backstress in the underlying flow rule (cf. Gurtin, 2000, 2003). Physical

arguments in support of an energetically induced backstress are given by Boyce and co-workers (e.g. Boyce

et al., 1988; Arruda and Boyce, 1993b). But if energetic considerations are to play a major role, then it

would seem appropriate to develop the theory within a framework that accounts for the first two laws of

thermodynamics. For isothermal processes the first two laws typically collapse into a single dissipation

inequality asserting that temporal changes in free energy be not greater than the rate at which work is

performed. This dissipation inequality plays a fundamental role in our discussion of suitable constitutive
equations.

Our development of the theory carefully accounts for restrictions placed on constitutive assumptions by

frame-indifference and by a new mathematical definition of an amorphous material based on the notion

that the constitutive relations for such materials should be invariant under all rotations of the reference

configuration and, independently, all rotations of the relaxed configuration.

The plan of this paper is as follows. We develop the general theory in Sections 2–6. In Sections 7 and 8 we

specialize our constitutive equations, and in Section 9 we summarize a set of specialized constitutive

2 We use the words plastic and inelastic interchangeably, and emphasize that the micromechanisms leading to such deformations in

amorphous solids are not related to dislocation-based micromechanisms that characterize the plastic deformation of crystalline metals.

See Argon (1993) for a review on the micromechanisms of plastic deformation of amorphous solids. For a review of the physics of

glassy polymers see Haward (1973) and Haward and Young (1997). For some recent reviews on aspects of bulk metallic glasses see

Johnson (1999) and Inoue (2000).
3 Under a change in frame with rotationQ ¼ QðtÞ, the standard transformation rule transforms Fe to QFe; but Fe symmetric would

not generally render QFe symmetric. To accomodate this difficulty it is necessary to have Fe transform to QFeQT and Fp to QFp, a

hypothesis that renders any relation between the Cauchy stress and Fe isotropic.
4 The material itself is presumed to be plastically incompressible. We believe that because of the disparate difference between the

scale of the macroscopic deformation and the scale of the local free-volume, the latter is better represented by an internal-state variable

rather than by Jp ¼ det Fp. In fact, in a previous version of this work we used Jp rather than g; the final equations were far more

complicated, but order-of-magnitude calculations as well as numerical calculations for polycarbonate lead us to believe that the

predictions of the two theories would differ little.
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equations that should be useful in applications. In Section 10, we apply the specialized equations to model

the large-deformation response of the amorphous polymeric solid, polycarbonate, at ambient temperature

and pressure. Finally, Section 11 contains concluding remarks.

2. Kinematics

2.1. Basic kinematics

We consider a homogeneous body BR identified with the region of space it occupies in a fixed reference

configuration, and denote by X an arbitrary material point of BR. A motion of BR is then a smooth one-to-

one mapping x ¼ yðX; tÞ with deformation gradient, velocity, and velocity gradient given by 5

F ¼ ry; v ¼ _yy; L ¼ gradv ¼ _FFF�1: ð2:1Þ
We base the theory on the Kr€ooner–Lee decomposition (Kroner, 1960; Lee, 1969)

F ¼ FeFp: ð2:2Þ
Here, suppressing the argument t:

(i) FpðXÞ represents the local deformation of referential segments dX to segments dl ¼ FpðXÞdX in the re-

laxed configuration due to ‘‘plastic mechanisms’’, such as the stretching, rotation, and relative slippage

of the molecular chains in polymeric glasses, or the cumulative effects of inelastic transformations re-

sulting from the cooperative action of atomic clusters in metallic glasses.
(ii) FeðXÞ represents the mapping of segments dl in the relaxed configuration into segments dx ¼ FeðXÞdl in

the deformed configuration due to ‘‘elastic mechanisms’’, such as stretching and rotation of the inter-

molecular structure in polymeric glasses or the interatomic structure in metallic glasses.

The relaxed configuration might therefore be viewed as the ambient space into which an infinitesimal

neighborhood of X is carried by the linear transformation FpðXÞ––or into which an infinitesimal neigh-

borhood of x ¼ yðXÞ is pulled back by the transformation FeðXÞ�1
. We refer to Fp and Fe as the plastic and

elastic parts of F.
By (2.1)3 and (2.2),

L ¼ Le þ FeLpFe�1

; ð2:3Þ
with

Le ¼ _FFeFe�1

; Lp ¼ _FFpFp�1

: ð2:4Þ
As is standard, we define the elastic and plastic stretching and spin tensors through

De ¼ symLe; We ¼ skwLe;
Dp ¼ symLp; Wp ¼ skwLp;

�
ð2:5Þ

so that Le ¼ De þWe and Lp ¼ Dp þWp.

5 Notation: r and div denote the gradient and divergence with respect to the material point X in the reference configuration; grad

and div denote these operators with respect to the point x ¼ yðX; tÞ in the deformed configuration; a superposed dot denotes the

material time-derivative. Throughout, we write Fe
�1 ¼ ðFeÞ�1, Fp

�T ¼ ðFpÞ�T, etc. We write symA, skwA, A0, and sym0A respectively,

for the symmetric, skew, deviatoric, and symmetric–deviatoric parts of a tensor A. Also, the inner product of tensors A and B is

denoted by A � B, and the magnitude of A by jAj ¼
ffiffiffiffiffiffiffiffiffiffiffi
A � A

p
.
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2.2. Incompressible, irrotational plastic flow

We make two basic kinematical assumptions concerning plastic flow. Firstly, we make the standard

assumption that the flow is incompressible, so that

det Fp ¼ 1 ð2:6Þ
and

trLp ¼ 0:

Secondly, we assume that the flow is irrotational in the sense that 6

Wp ¼ 0: ð2:7Þ
Then, trivially, Lp 
 Dp and

_FFp ¼ DpFp; ð2:8Þ
with Dp deviatoric.

The right and left elastic and plastic polar decompositions of F are given by

Fe ¼ ReUe ¼ VeRe; Fp ¼ RpUp ¼ VpRp; ð2:9Þ
where Re and Rp are rotations, while Ue, Ve, Up, and Vp are symmetric, positive-definite tensors. By (2.4),

(2.7), and (2.9),

_RRpTRp ¼ skwð _UUpUp�1Þ;
thus note that although Wp ¼ 0, the rotation Rp need not be the identity.

We write

J ¼ det F ¼ det Fe: ð2:10Þ

2.3. Frame-indifference

Changes in frame (observer) are smooth time-dependent rigid transformations of the Euclidean space

through which the body moves. We require that the theory be invariant under such transformations, and

hence under transformations of the form

yðX; tÞ ! QðtÞyðX; tÞ þ qðtÞ; ð2:11Þ
with QðtÞ a rotation (proper-orthogonal tensor) and qðtÞ a vector at each t. Thus

F! QF: ð2:12Þ
The reference and relaxed configurations are independent of the choice of such changes in frame; thus the
fields Fp and Dp are invariant under transformations of the form (2.11). This observation, (2.2) and (2.12)

yield the transformation law

Fe ! QFe; ð2:13Þ
so that Le ! QLeQT þ _QQQT and hence

De ! QDeQT; We ! QWeQT þ _QQQT: ð2:14Þ

6 In Appendix B we give a formal argument, based on isotropy, showing that Wp is orders of magnitude smaller than the elastic

strains, granted they themselves are small.
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3. Principle of virtual power: Macroscopic and microscopic force balances

The theory presented here is based on the belief that the power expended by each independent ‘‘rate-like’’

kinematical descriptor be expressible in terms of an associated force system consistent with its own balance.
But the basic ‘‘rate-like’’ descriptors, namely, v, Le, and Dp are not independent, as they are constrained by

(2.3), and it is not apparent what forms the associated force balances should take. For that reason, we

determine these balances using the principal of virtual power.

We write BR for the undeformed body and BðtÞ ¼ yðBR; tÞ for the deformed body. We use the term part to

denote an arbitrary time-dependent subregion P ðtÞ of BðtÞ that deforms with the body, so that

P ðtÞ ¼ yðPR; tÞ ð3:1Þ
for some fixed subregion PR of BR.

In what follows it is most convenient to label material points by their positions x ¼ yðX; tÞ in the de-

formed configuration.

3.1. Principle of virtual power

Assume that, at some arbitrarily chosen but fixed time, the fields y, Fe, and (hence) Fp are known, and

consider the fields v, Le, and Dp as virtual velocities to be specified independently in a manner consistent

with (2.3); that is, denoting the virtual fields by ~vv, eLLe, and eDDp to differentiate them from fields associated

with the actual evolution of the body, we require that

grad~vv ¼ eLLe þ Fe eDDpFe�1

: ð3:2Þ
More specifically, we define a generalized virtual velocity to be a list

V ¼ ð~vv; eLLe; eDDpÞ
consistent with (3.2).

We assume that under a change in frame the fields comprising a generalized virtual velocity transform as
their non-virtual counterparts; i.e., e.g.,eLLe ! QeLLeQT þ _QQQT: ð3:3Þ

The principle of virtual power is the assertion that, given any part P , the (virtual) power expended on P
by material or bodies exterior to P be equal to the virtual power expended within P . Let n denote the
outward unit normal to oP . The external expenditure of power, which is standard, consists of a macroscopic

surface traction tðnÞ and a macroscopic body force f, each of whose working accompanies the macroscopic

motion of the body. (The body force f is assumed to include inertial forces.) We therefore write the external

power in the form

WextðP ;VÞ ¼
Z
oP
tðnÞ � ~vvdaþ

Z
P
f � ~vvdv; ð3:4Þ

with tðnÞ (for each unit vector n) and f defined over the body for all time.

We assume that (virtual) power is expended internally by a stress T work conjugate to eLLe and an internal

microstress Tp work conjugate to eDDp. We therefore write the internal power in the form

WintðP ;VÞ ¼
Z
P
ðT � eLLe þ J�1Tp � eDDpÞdv: ð3:5Þ

The term J�1 arises because the microstress-power Tp � eDDp is measured per unit volume in the relaxed
configuration, but the integration is carried out within the deformed body. Here T and Tp are defined over

the body for all time. We assume that Tp is symmetric and deviatoric, since eDDp is symmetric and deviatoric.
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The precise statement of the principle of virtual power consists of two basic requirements:

(V1) (Power Balance) Given any part P ,

WextðP ;VÞ ¼ WintðP ;VÞ for all generalized virtual velocities V: ð3:6Þ

(V2) (Frame-Indifference) Given any part P and any generalized virtual velocity V,

WintðP ;VÞ is invariant all changes in frame: ð3:7Þ

3.2. Macroscopic force and moment balances: Microforce balances

To deduce the consequences of the principle of virtual power, assume that (V1) and (V2) are satisfied. In

applying the virtual balance (3.6) we are at liberty to choose any V consistent with the constraint (3.2). We

consider first a generalized virtual velocity with eDDp 
 0, so that grad~vv ¼ eLLe. For this choice of V, (V1)

yieldsZ
oP
tðnÞ � ~vvdaþ

Z
P
f � ~vvdv ¼

Z
P
T � grad~vvdv;

and, using the divergence theorem,Z
oP
ðtðnÞ � TnÞ � ~vvdaþ

Z
P
ðdivTþ fÞ � ~vvdv ¼ 0:

Since this relation must hold for all P and all ~vv, standard variational arguments yield the traction condition

tðnÞ ¼ Tn; ð3:8Þ

and the local force balance

divTþ f ¼ 0: ð3:9Þ

Next, consider the internal power WintðP ;VÞ under an arbitrary change in frame. In the new frame P
transforms rigidly to a region P �, V to a generalized virtual velocity V�, T to T� and Tp to Tp� ; (V2)
therefore implies that WintðP ;VÞ ¼ W�

intðP �;V�Þ. If we transform the integral over P � to an integral over P
and use the relevant transformation laws for V�, we find that,

W�
intðP �;V�Þ ¼

Z
P
fðT� � ðQeLLeQT þ _QQQTÞ þ J�1Tp� � eDDpgdv:

Since P , the change in frame, and the fields eLLe and eDDp are arbitrary, and since _QQQT is an arbitrary skew

tensor, we may use (3.7) to conclude that T is symmetric,

T ¼ TT; ð3:10Þ

and transforms according to

T! QTQT; ð3:11Þ

while Tp is invariant. Thus T plays the role of the Cauchy stress, and (3.9) and (3.10) represent the

macroscopic force and moment balances.

For convenience we define

S0 ¼ sym0ðJFeTTFe�TÞ; ð3:12Þ
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where sym0ð� � �Þ denotes the symmetric–deviatoric part of the tensor (� � �). We next choose ~vv 
 0. Then the

external power vanishes identically, so that, by (V1), the internal power must also vanish. Moreover, by

(3.2), eLLe ¼ �Fe eDDpFe�1

. Thus, since P is arbitrary,

Tp � eDDp ¼ JðFeTTFe�TÞ � eDDp: ð3:13Þ
Since eDDp is an arbitrary symmetric, deviatoric tensor field, we find that

S0 ¼ Tp; ð3:14Þ
which represents a microforce balance.

Finally, writing WextðP Þ and WintðP Þ for the external and internal powers when the actual (non-virtual)

fields are used, we find, using the symmetry of T, that

WintðP Þ ¼
Z
P
ðT �De þ J�1Tp �DpÞdv: ð3:15Þ

4. Dissipation inequality (second law)

We consider a purely mechanical theory based on a second law requiring that the temporal increase in

free energy of any part P be less than or equal to the power expended on P . Let w denote the free energy,

measured per unit volume in the relaxed configuration. The second law therefore takes the form of a

dissipation inequality

_Z
P

wJ�1 dv
Z
P

wJ�1 dv6WextðP Þ ¼ WintðPÞ: ð4:1Þ

Since J�1 dv with J ¼ det F represents the volume measure in the reference configuration, and since

P ¼ P ðtÞ deforms with the body,

_Z
P

wJ�1 dv
Z
P

wJ�1 dv ¼
Z
P

_wwJ�1 dv:

Thus, since P is arbitrary, we may use (3.15) to localize (4.1); the result is the local dissipation inequality

_ww � JT �De � Tp �Dp
6 0; ð4:2Þ

which will form a basis for our development of a suitable constitutive theory.

5. Constitutive theory

5.1. Constitutive equations

We introduce a list of n scalar internal state-variables n ¼ ðn1; n2; . . . ; nnÞ, and assume that

w ¼ ŵwðFe;FpÞ;
T ¼ bTTðFe;FpÞ;
Tp ¼ bTTpðFe;Fp;Dp; nÞ;
_nni ¼ hiðFe;Fp;Dp; nÞ:

9>>>=>>>; ð5:1Þ

Note that we neglect from the outset rate-dependence in the elastic response of the material.

L. Anand, M.E. Gurtin / International Journal of Solids and Structures 40 (2003) 1465–1487 1471



Under a change in frame Fp and Dp are invariant, while Fe ! QFe; thus, using a standard argument, we

see that frame-indifference reduces (5.1) to the specific form

w ¼ ŵwðUe;FpÞ;
T ¼ RebTTðUe;FpÞReT ;

Tp ¼ bTTpðUe;Fp;Dp; nÞ;
_nni ¼ hiðUe;Fp;Dp; nÞ:

9>>>=>>>; ð5:2Þ

The following definitions help to make precise our notion of an amorphous material:

(i) Orthþ ¼ the group of all rotations (the proper orthogonal group);

(ii) the referential symmetry group Gref is the group of all rotations of the reference configuration that leave

the response of the material unaltered;

(iii) the relaxed symmetry group Grel is the group of all rotations of the relaxed configuration that leave the

response of the material unaltered.

We refer to the material as amorphous (and to the reference and relaxed configurations as undistorted) if

Gref ¼ Orthþ; Grel ¼ Orthþ; ð5:3Þ
so that the response of the material is invariant under arbitrary rotations of the reference and relaxed

configurations. 7

We now discuss the manner in which the basic fields transform under such transformations, granted the

physically natural requirement of invariance of the internal power (3.15), or equivalently, the requirement

that

Tp �Dp and T �De be invariant: ð5:4Þ
Let Q be a rotation of the reference configuration. Then

Fp ! FpQ and Fe is invariant; ð5:5Þ
so that, by (2.3), Le and Dp and (hence) De, and Dp are invariant. We may therefore use (5.4) to conclude

that T and Tp are invariant.

On the other hand, let Q be a rotation of the relaxed configuration. Then

Fp ! QTFp and Fe ! FeQ; ð5:6Þ
and hence (2.3) yields the transformation law Dp ! QTDpQ and the invariance of Le, so that De is in-

variant. Finally, (5.4) yields the invariance of T and the transformation law Tp ! QTTpQ.

We henceforth restrict attention to materials that are amorphous in the sense that the constitutive re-

lations (5.1) (or equivalently, (5.2)) are invariant under all rotations of the reference configuration and,

independently, all rotations of the relaxed configuration.

Applying the former with Q ¼ RpT reduces (5.2) to

w ¼ ŵwðUe;VpÞ;
T ¼ RebTTðUe;VpÞReT ;

Tp ¼ bTTpðUe;Vp;Dp; nÞ;
_nni ¼ hiðUe;Vp;Dp; nÞ:

9>>>=>>>; ð5:7Þ

7 For metallic and polymer glasses this notion attempts to characterize situations in which the material has a completely disordered

atomic or molecular structure.
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Let

Ce ¼ FeTFe ¼ ðUeÞ2; Bp ¼ FpFpT ¼ ðVpÞ2;

and, in (5.7), replace Re by FeUe�1

, Ue by
ffiffiffiffiffiffi
Ce

p
, and Vp by

ffiffiffiffiffiffi
Bp

p
; this reduces (5.7) to

w ¼ �wwðCe;BpÞ;
T ¼ Fe�TTðCe;BpÞFeT ;
Tp ¼ �TTpðHÞ;
_nni ¼ hiðHÞ;

9>>>=>>>; ð5:8Þ

where H denotes the argument list

H ¼ ðCe;Bp;Dp; nÞ:

Our final step is to consider invariance under rotations of the relaxed configuration using the trans-

formation rules specified in the paragraph containing (5.6). Under a rotation Q of the relaxed configura-

tion,

Ce ! QTCeQ; Bp ! QTBpQ;

and the response functions �ww, �TT, �TTp, and hi appearing in (5.8) must each be isotropic.

5.2. Thermodynamic restrictions

With a view toward determining the restrictions imposed by the local dissipation inequality, note that

_ww ¼ o �ww
oCe � _CCe þ o �ww

oBp � _BBp:

Further, using the symmetry of o �ww=oCe,

o �ww
oCe � _CCe ¼ o �ww

oCe � ð2FeT _FFeÞ ¼ 2Fe o
�ww

oCe F
eT

 !
� Le ¼ 2Fe o

�ww
oCe F

eT

 !
�De

and similarly, since Dp is symmetric, deviatoric,

o �ww
oBp � _BBp ¼ o �ww

oBp � ð2 _FFpFpTÞ ¼ 2
o �ww
oBp B

p

 !
�Dp ¼ 2sym0

o �ww
oBp B

p

 !
�Dp:

Thus

_ww ¼ 2Fe o
�ww

oCe F
eT

 !
�De þ 2sym0

o �ww
oBp B

p

 !
�Dp: ð5:9Þ

If we substitute (5.8) and (5.9) into the local dissipation inequality (4.2), we find that

Fe 2
o �ww
oCe

 (
� J �TTðCe;BpÞ

!
FeT

)
�De þ 2sym0

o �ww
oBp B

p

 !(
� �TTpðCe;Bp;Dp; nÞ

)
�Dp

6 0: ð5:10Þ

This inequality is to hold for all values of Ce, Bp, n, De, and Dp. Since De appears linearly, its ‘‘coefficient’’
must vanish; thus J �TT ¼ 2o �ww=oCe. Thus, defining YpðHÞ to be the difference �TTpðHÞ � 2sym0ððo �ww=oBpÞBpÞ,
we are led to the following constitutive relations for the stresses:
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T ¼ 2J�1Fe o �wwðCe;BpÞ
oCe

 !
FeT ;

Tp ¼ 2sym0

o �ww
oBp B

p

 !
þ YpðHÞ;

9>>>>=>>>>; ð5:11Þ

where the response function Yp must satisfy

YpðHÞ �Dp P 0: ð5:12Þ

The left side of (5.12) represents the energy dissipated, measured per unit volume in the relaxed configu-

ration. To rule out trivial special cases, we assume that the material is strictly dissipative in the sense that

YpðHÞ �Dp > 0 for Dp 6¼ 0: ð5:13Þ

6. Flow rule

We define

Sback ¼ 2sym0

o �ww
oBp B

p

 !
ð6:1Þ

as a backstress. Then a central result of the theory––which follows upon using the constitutive relation

(5.11)2 and the microforce balance (3.14) ––is the flow rule

S0 � Sback ¼ YpðHÞ: ð6:2Þ

In light of the dissipation inequality (5.12), we refer to YpðHÞ as the dissipative flow stress.
It is convenient to write

Te ¼ JFe�1

TFe�T

: ð6:3Þ

Then, by (5.11)1,

Te ¼ 2
o �wwðCe;BpÞ

oCe ; ð6:4Þ

Te represents the Cauchy stress pulled back to the relaxed configuration. Then, by (3.12),

S0 ¼ sym0ðCeTeÞ; ð6:5Þ

and using (6.4),

S0 ¼ 2sym0 Ce o
�ww

oCe

 !
: ð6:6Þ

7. Specialization of the constitutive equations

The constitutive restrictions derived thus far are fairly general. With a view towards applications we now
simplify the theory by imposing additional constitutive assumptions based on experience with existing

theories of viscoplasticity and amorphous materials.

1474 L. Anand, M.E. Gurtin / International Journal of Solids and Structures 40 (2003) 1465–1487



7.1. Free energy

To state the constitutive relation for the free energy it is convenient to define an effective plastic stretch by

kp ¼ 1ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffi
trBp

p
¼ 1ffiffiffi

3
p jVpj: ð7:1Þ

We consider a non-interactive free energy of the form

�wwðCe;BpÞ ¼ weðCeÞ þ wpðBpÞ; ð7:2Þ
with

weðCeÞP 0; weð1Þ ¼ 0;
wpðBpÞP 0; wpð1Þ ¼ 0:

�
ð7:3Þ

Then, by (6.4),

Te ¼ 2
owe

oCe : ð7:4Þ

We assume further that the plastic energy has the specific form

wpðBpÞ ¼ WðkpÞP 0; Wð1Þ ¼ 0: ð7:5Þ
In view of (7.1),

owp

oBp ¼
l
2
1; where l ¼ 1

3kp

oW
okp : ð7:6Þ

Thus, by (6.1), the symmetric and deviatoric backstress is given by

Sback ¼ lBp
0 : ð7:7Þ

7.2. Dissipative flow stress. Inversion of the flow rule

It is convenient to write K for the list

K ¼ ðCe;Bp; nÞ:
We assume that the dissipative flow stress Yp has the specific form 8

YpðHÞ ¼ ‘ðKÞjDpjm�1
Dp; 0 < m6 1; ð7:8Þ

where

‘ðKÞ > 0 ð7:9Þ
to ensure satisfaction of the dissipation inequality (5.13). Here m is a constant; the limit m ! 0 renders (7.8)

rate-independent, while m ¼ 1 renders (7.8) linearly viscous. 9

8 Thus the dissipative plastic stress Yp is parallel to––and points in the same direction as––the deviatoric plastic stretching tensorDp;

this corresponds to an assumption of ‘‘maximal dissipation’’ or an assumption of microstability (cf. Gurtin, 2003, Sections 5.2 and 5.3).

In the rate-independent context, an analogous principle of maximum-dissipation has been variously attributed to R. von Mises,

G.I. Taylor, and R. Hill (see Lubliner, 1990).
9 More elaborate forms for the rate-dependence may be considered, but a simple power-law rate-dependence makes the structure of

our theory more transparent.
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In view of (7.8), the flow rule (6.2) becomes

S0 � Sback ¼ ‘ðKÞjDpjm�1
Dp: ð7:10Þ

The limit m ! 0 gives a standard Mises-type flow rule,

S0 � Sback ¼ ‘ðKÞ D
p

jDpj : ð7:11Þ

In this case jS0 � Sbackj ¼ ‘ðKÞ, which shows that ‘ðKÞ is the radius of a corresponding yield surface.

For m > 0 the flow rule (7.10) may be inverted. With this in mind, the following inversion lemma will be

useful: Assume that 0 < m6 1. Let q > 0 be given. Then the relation

A ¼ qjHjm�1
H ð7:12Þ

between tensors A and H is invertible with inverse

H ¼ kjAjð1�mÞ=m
A; k ¼ q�1=m: ð7:13Þ

Indeed, taking the norm of both sides of (7.12) gives jAj ¼ ‘jHjm, and this, in turn, may be used to invert

(7.12).

Using the inversion lemma and (7.10), we may rewrite the flow rule in the form

Dp ¼ kðKÞjS0 � lBp
0 j

ð1�mÞ=mðS0 � lBp
0Þ; ð7:14Þ

with

kðKÞ ¼ ‘ðKÞ�1=m
: ð7:15Þ

7.3. Internal variables

We restrict the list n of internal variables to two variables: a variable

s > 0

that represents the intermolecular resistance to plastic flow; and an unsigned variable g that represents the

local free-volume. 10 We assume that the evolution of these state variables (cf. (5.8)4) is given by

_ss ¼ hðK; jDpjÞ;
_gg ¼ gðK; jDpjÞ:

�
ð7:16Þ

8. Approximate theory for small elastic stretches

As our goal is a theory involving ‘‘small’’ elastic stretches, we introduce the elastic strain

Ee ¼ 1
2
ðCe � 1Þ: ð8:1Þ

Moreover, we restrict attention to the classical elastic strain-energy

weðCeÞ ¼ GjEe
0j
2 þ 1

2
KjtrEej2; ð8:2Þ

10 A key feature controlling the initial plastic deformation of amorphous materials is known to be the evolution of the local free-

volume associated with the metastable state of these materials. It is commonly believed that the evolution of the local free-volume is the

major reason for the highly non-linear stress–strain behavior of glassy materials (amorphous polymers at ambient temperatures, and

amorphous metals at high temperatures) which precedes the yield-peak and gives rise to the post-yield strain-softening.
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where G and K are the elastic shear and bulk moduli. By (7.4) and (8.1), the stress–strain relation corres-

ponding to the strain energy (8.2), decomposed into deviatoric and spherical parts, then becomes

Te
0 ¼ 2GEe

0; trTe ¼ 3KtrEe: ð8:3Þ

We assume henceforth that the elastic stretches are small in the sense that

Ue � 1:

Then, since JFe�1

TFe�T � ReTTRe, we may use (6.3) and (6.5) to conclude that

Te � ReTTRe; S0 � Te
0; �1

3
trTe � p; ð8:4Þ

where p is the mean normal pressure

p ¼ �1
3
trT: ð8:5Þ

As a further simplification of the theory, we assume that the constitutive moduli k, h, and g depend on the

list K ¼ ðCe;Bp; nÞ through dependences on trEe, kp, g, and s, or, since p � �K trEe, through dependences

on p, kp, g, and s. We therefore write the flow rule in the form

Te
0 � lBp

0 ¼ ‘ðp; kp; g; sÞjDpjm�1
Dp; ð8:6Þ

with inverse

Dp ¼ kðp; kp; g; sÞjTe
0 � lBp

0 j
ð1�mÞ=mðTe

0 � lBp
0Þ; k ¼ ‘�1=m: ð8:7Þ

Note that Dp is parallel to––and points in the same direction as––the tensor-difference Te
0 � lBp

0.

Similarly, the differential equations (7.16) now have K ¼ ðp; kp; g; sÞ.

9. Final constitutive equations assuming small elastic stretches and an initial virgin state

In terms of the variables

and the definitions

T, T ¼ TT, Cauchy stress,

F, det F > 0, deformation gradient,

Fp, det Fp ¼ 1, plastic part of the deformation gradient,

s, s > 0; isotropic resistance to plastic flow,

g, free volume,

Fe ¼ FFp�1

; det Fe > 0, elastic deformation gradient,
Ce ¼ FeTFe, elastic right Cauchy–Green strain,

Ee ¼ 1
2
ðCe � 1Þ, elastic strain,

Te ¼ ReTTRe, stress conjugate to the elastic strain Ee,

p ¼ � 1
3
trT, mean normal pressure,

Te
0 ¼ Te þ p1, deviatoric stress,

Bp ¼ FpFpT , left Cauchy–Green tensor corresponding to Fp,

B
p
0 ¼ Bp � 1

3
ðtrBpÞ1, deviatoric part of Bp,

kp ¼ 1ffiffi
3

p
ffiffiffiffiffiffiffiffiffiffi
trBp

p
, effective plastic stretch,
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we summarize below a special set of constitutive equations that should be useful in applications:

1. Free Energy:

w ¼ we þ wp; ð9:1Þ

we ¼ GjEe
0j
2 þ 1

2
KjtrEej2; ð9:2Þ

wp ¼ WðkpÞP 0; Wð1Þ ¼ 0: ð9:3Þ

Here G and K are the elastic shear and bulk moduli, respectively.

2. Equation for the stress:

Te ¼ 2GEe
0 þ KðtrEeÞ1: ð9:4Þ

3. Flow rule:

The evolution equation for Fp is

_FpFp ¼ DpFp; FpðX; 0Þ ¼ 1; ð9:5Þ

with Dp given by the flow rule

Dp ¼ kðp; kp; g; sÞjTe
0 � lBp

0 j
ð1�mÞ=mðTe

0 � lBp
0Þ; ð9:6Þ

where

l ¼ 1

3kp

oW
okp : ð9:7Þ

4. Evolution equations for the internal variables s and g:

_ss ¼ hðp; kp; g; s; jDpjÞ; sðX; 0Þ ¼ s0;
_gg ¼ gðp; kp; g; s; jDpjÞ; gðX; 0Þ ¼ 0;

�
ð9:8Þ

with s0 a constitutive modulus that represents the initial resistance to flow. Here h, may take on positive

(hardening)and negative (softening) values. Also, as is tacit from (9.8)2, the free volume is measured from

the value g ¼ 0 in the virgin state of the material, and thus g at any other time represents a change in the
free-volume from the initial state.

To complete the constitutive model for a particular amorphous material the constitutive parameter/

functions that need to be specified are

G;K;W; k; h; g; s0f g:

10. Application to an amorphous polymeric solid

In this section we further specialize our constitutive model and apply it to describe the deformation

response of the technologically important amorphous polymeric solid, polycarbonate, at atmospheric

pressure and room temperature. 11

11 The glass transition temperature for polycarbonate is �145 �C.
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In amorphous polymeric materials the major part of wp arises from an ‘‘entropic’’ contribution. Moti-

vated by statistical mechanics models of rubber elasticity (cf. Treloar, 1975; Arruda and Boyce, 1993a;

Anand, 1996) we consider two specific forms:

1. For small to moderate values of kp, we consider the simple neo-Hookean form

wp ¼ l
3

2
fðkpÞ2 � 1g; ð10:1Þ

with l a constant equal to the backstress modulus (9.7).

2. For larger values of kp, we consider the Langevin-inverse form

wp ¼ lRk2
L

kp

kL

� �
x

�
þ ln

x
sinh x

� �
� 1

kL

� �
y � ln

y
sinh y

� ��
; ð10:2Þ

x ¼ L�1 kp

kL

� �
; y ¼ L�1 1

kL

� �
; ð10:3Þ

where L�1 is the inverse 12 of the Langevin function Lð� � �Þ ¼ cothð� � �Þ � ð� � �Þ�1
.

This functional form for wp involves two material parameters: lR, called the rubbery modulus, and kL

called the network locking stretch. In this case, from (9.7), the backstress modulus is

l ¼ lR

kL

3kp

� �
L�1 kp

kL

� �
: ð10:4Þ

The modulus l ! 1 as kp ! kL, since L�1ðzÞ ! 1 as z ! 1.

Graphs of wp versus kp for representative values 13 of material parameters for the neo-Hookean energy

(l ¼ 16:95 MPa), and for the form involving the inverse Langevin function (lR ¼ 11 MPa, kL ¼ 1:45) are
shown in Fig. 1a. The corresponding graphs for the backstress modulus l are shown in Fig. 1b.

Next, to make connection with the existing literature, we introduce an it equivalent shear-stress and

equivalent plastic shear-strain rate defined by

�ss ¼ 1ffiffiffi
2

p jTe
0 � lBp

0 j; mp ¼
ffiffiffi
2

p
jDp

0 j; ð10:5Þ

respectively. Further, introducing two additional material parameters, m0, a reference plastic shear-strain

rate, and a, a pressure sensitivity parameter, and writing C for the inconsequential constant
ffiffiffi
2

p
ð
ffiffiffi
2

p
=m0Þm, we

set

‘ðp; kp; g; sÞ ¼ Cðsþ apÞ; ð10:6Þ

and recall that we require ‘ > 0 to ensure satisfaction with the dissipation inequality (5.12). Then

Dp ¼ mp
Te

0 � lBp
0

2�ss

� �
; mp ¼ m0

�ss
sþ ap

 !1=m

: ð10:7Þ

12 To evaluate x ¼ L�1ðyÞ for a given y in the range 0 < y < 1, we numerically solve the non-linear equation f ðxÞ ¼ LðxÞ � y ¼ 0

for x.
13 These numbers are based on our estimates (to be discussed shortly) for polycarbonate.
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We consider the evolution equations (9.8) in the special coupled rate-independent form 14

_ss ¼ h0 1� s
~ssðgÞ

 !
mp;

_gg ¼ g0
s
scv

� 1

� �
mp;

9>>>=>>>; ð10:8Þ

with

~ssðgÞ ¼ scv½1þ bðgcv � gÞ�; ð10:9Þ

where h0; g0; scv; b; gcvf g are additional material parameters. Here ~ss ¼ ~ssðgÞ is a saturation value of s: _ss is

positive for s < ~ss and negative for s > ~ss. By definition mp is non-negative. Assuming that mp > 0, we may by

a change in time scale transform (10.8) into a pair of ODEs. This system has a single equilibrium point
ðscv; gcvÞ in the ðs; gÞ-plane, and it is globally stable. Thus all solutions satisfy

s ! scv and g ! gcv as t ! 1:

We restrict attention to the initial conditions s ¼ s0 and g ¼ 0, with

s0 6 s6 scvð1þ bgcvÞ:

Then a study of the phase portrait shows that g increases monotonically to its equilibrium value gcv, while s
increases monotonically to a peak and then decreases monotonically to its equilibrium value scv, thus
capturing the observed yield-peak in the flow resistance.
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Fig. 1. (a) Comparison of the Langevin inverse and neo-Hookean forms of the plastic free energy wp and (b) comparison of the

corresponding forms for the backstress modulus l.

14 We expect that ~ss (and perhaps h0 and g0) may, in general, depend on mp, but currently there is insufficient experimental evidence to

warrant such a refinement.
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We have implemented our constitutive model in the finite-element computer program ABAQUS/Explicit

(ABAQUS, 2001) by writing a user material subroutine. Using this finite-element program, we next present

results to some representative problems.

A stress–strain curve obtained from a monotonic simple compression experiment 15 conducted at a

constant logarithmic strain rate of )0.001 s�1 is shown in Fig. 2; absolute values of stress and strain are

plotted. After an initial approximately linear region, the stress–strain curve becomes markedly non-linear

prior to reaching a peak in the stress; the material then strain-softens to a quasi-plateau before beginning a

broad region of rapid strain hardening.
We discuss below the results of our efforts at estimation of the material parameters for our constitutive

model. 16 Recall that the material parameters that need to be determined are

1. The elastic shear and bulk moduli ðG;KÞ in the elastic part of the free energy.

2. The parameter l in the neo-Hookean form, or the parameters ðlR; kLÞ in the inverse Langevin form of

the plastic free energy.

3. The parameters fm0;m; a; h0; g0; scv; b; gcv; s0g in the flow rule and the evolution equations for ðs; gÞ.
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Fig. 2. (a) Stress–strain response of polycarbonate in simple compression, together with a fit of the constitutive model using the

Langevin form for wp and (b) comparison of the stress–strain responses calculated using the Langevin form and the neo-Hookean form

for wp.

15 All experiments reported in this paper were performed by Mr. B.P. Gearing as part of his doctoral research at MIT. As is well

known, the mechanical response of amorphous thermoplastics is very sensitive to prior thermo-mechanical processing history. The

experiments were conducted on polycarbonate specimens which were annealed at the glass transition temperature of this material, 145

�C, for 2 h, and then furnace-cooled to room temperature in approximately 15 h. The experiments reported here were conducted under

isothermal conditions at room temperature.
16 We have not attempted to carry out a comprehensive experimental program to obtain precise numbers for polycarbonate. The

purpose of this section is to emphasize only the qualitative features of the theory. We leave a more detailed comparison of theory

against experiment for future work.
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The values of ðG;KÞ are determined by measuring the Young�s modulus and Poisson�s ratio of the material

in a compression experiment and using standard conversion relations of isotropic elasticity to obtain the

elastic shear and bulk moduli. The parameters fm0;mg are estimated by conducting a strain rate jump

experiment in simple compression, and the pressure sensitivity parameter a is estimated from compres-
sion experiments under superposed hydrostatic pressure reported in the literature. The parameters

fh0; g0; scv; b; gcv; s0g and ðlR; kLÞ may be estimated by fitting a stress–strain curve in compression to large

strains. Once ðlR; kLÞ are estimated so as to fit the data for large strains, then the value of l in the neo-

Hookean form of wp is easily obtained from (10.4) as the limit at kp ¼ 1.

Using a value of a ¼ 0:08 from the data reported by Spitzig and Richmond (1979), a value of m0 ¼ 0:0017
s�1 and a strain rate-sensitivity parameter m ¼ 0:011 obtained from a strain rate jump experiment, the

parameters fG;K; lR; kL; h0; g0; scv; b; gcv; s0g were estimated by fitting the stress–strain curve for poly-

carbonate in simple compression (Fig. 2). The fit was performed by judiciously adjusting the values of these
parameters in finite element simulations of a simple compression experiment (assuming homogeneous

deformation) using a single ABAQUS/C3D8R element. After a few attempts, a reasonable fit was obtained,

and this is shown in Fig. 2a. The list of parameters obtained using this heuristic calibration procedure

are: 17

G ¼ 0:857 GPa; K ¼ 2:24 GPa; lR ¼ 11:0 MPa; kL ¼ 1:45;
m0 ¼ 0:0017 s�1; m ¼ 0:011; a ¼ 0:08;
h0 ¼ 2:75 GPa; scv ¼ 24:0 MPa; b ¼ 825; gcv ¼ 0:001;
g0 ¼ 6:0� 10�3; s0 ¼ 20:0 MPa:

Fig. 2b shows a comparison of the stress–strain response calculated using the inverse Langevin form for

wp and the list of material parameters above, against the stress–strain response calculated using the neo-

Hookean form for wp with the same material parameters, except that the pair of constants ðlR; kLÞ are
replaced by the single constant l ¼ 16:95 MPa. This comparison shows that the simple neo-Hookean form

for wp may be adequate for applications involving logarithmic strains less than �35%. In the remaining

part of our discussion we shall concentrate on the predictions of the model using the inverse Langevin form

of wp.

A representative stress–strain curve obtained from a simple compression experiment conducted to a

strain level of � �0:9, and then unloaded to zero stress is shown in Fig. 3. The experiment clearly exhibits

reverse yielding upon unloading due to the development of a backstress. A corresponding numerical cal-

culation which exhibits the same response is also shown in Fig. 3. The numerical simulation was carried out
using the material parameters determined by fitting the monotonic compression experiment, as discussed

above; the unloading part of the stress–strain curve was not used to adjust the material parameters. The

correspondence between the predicted unloading response from the model and the actual experiment is very

encouraging.

Finally, Fig. 4a shows a representative experimentally measured load–displacement curve in a tension

experiment on a specimen with a cylindrical gauge section. At the peak load a pronounced neck forms in

the gauge section, the load subsequently decreases to an approximate plateau value, and the neck propa-

gates along the gauge section. To numerically model this experiment, one half of a specimen was meshed
with 390 ABAQUS/CAX4R axisymmetric elements. As before, the constitutive parameters used in the

simulation are those obtained from the fitting exercise for the compression experiment. The calculated

load–displacement response is also shown in Fig. 4a. Deformed geometries are shown in Fig. 4b and c at the

two displacement levels which have been marked in Fig. 4a. The deformation is homogeneous until the

peak load. Subsequent to the peak load, at location 1, a localized neck has formed at the center of the gauge

17 This list, although not unique, seems adequate for illustrative purposes.
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section, and by stage 2 the neck has propagated along the gauge section, as was observed in the corres-

ponding experiment.

11. Concluding remarks

We have shown an application of our theory to an amorphous polymeric solid in the previous section.
Here the explicit dependence of the Helmholtz free energy on Fp, led us directly to a resistance to plastic

Fig. 4. (a) Experimental and numerical load–displacement curves in tension; two displacement levels of interest are marked. (b) De-

formed geometry at displacement level 1 showing the beginnings of neck formation; (c) at displacement level 2 showing that the neck

has propagated along the gauge section of the specimen.
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Fig. 3. Stress–strain response of polycarbonate in simple compression showing reverse yielding upon unloading due to the development

of back stress. The calculated response shows the same phenomenon.
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flow as represented by the backstress, Sback. For amorphous metallic solids we expect that the dependence

of the free energy on Fp should be considerably smaller than that in amorphous polymers, 18 and in this

case we expect that our constitutive model should also be applicable, provided the backstress in the model is

neglected. 19

The current generation of bulk metallic glasses are believed to have many potential applications resulting

from their unique properties: superior strength (�1.8 GPa), and high yield strain (�2%); thus the elastic

strain energy that can be stored in these materials is extremely high (e.g., Johnson, 1999; Inoue, 2000).

However, when a metallic glass is deformed at ambient temperatures the plastic deformation is inhomo-

geneous, and is characterized by the formation of intense localized shear bands; 20 fracture typically occurs

after very small inelastic strain in tension, and an inelastic strain of only a few percent in compression. In

contrast, these materials exhibit a high strain-rate sensitivity (large value of m), and large inelastic strains at

temperatures greater than approximately 70% of the glass transition temperature of the material. This
opens the possibility of using conventional metal forming technologies to manufacture structural com-

ponents from this relatively new class of materials. Thus there is growing interest in studying the large

deformation response of bulk metallic glasses in this high temperature range (e.g. Nieh et al., 2001). We

believe that our constitutive model, when suitably calibrated, might be useful for such applications.
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Appendix A. Texture induced by plastic deformation; initial texture

Consider a process in which the material in the neighborhood of an arbitrary material point X is first

loaded and then unloaded to a state in which Fe ¼ 1. The resulting residual plastic distortion Fp at X would

then have an associated texture with directional characteristics represented by the principal directions of the

strain tensor Vp and texture strength by the associated principal stretches. Generally one would consider

processes starting from the virgin state of the body, so that FpðX; 0Þ ¼ 1. But our theory does not rule out
the possibility of starting at a plastically deformed state in the sense that 21

FpðX; 0Þ 6¼ 1:

In this case the material would possess initial texture defined by the initial strain tensor VpðX; 0Þ. Moreover,

since neither the flow rule (6.2) nor the constitutive equations (5.8) exhibit dependences on Rp, and since the

evolution equation _FFp ¼ DpFp for Fp is invariant under any transformation of the form Fp ! FpH with

18 The two-dimensional molecular dynamic simulations of the deformation of an atomic glass of Deng et al. (1989) do show the

development of a Bauschinger effect (their Fig. 8). However, we have not found a report of the Bauschinger effect in atomic glasses in

physical experiments on these materials at the macroscopic level.
19 Indeed, if the material is further idealized as plastically pressure-insensitive and one drops the internal variable g, then one

recovers an isotropic elastic–viscoplastic constitutive model similar in form to models which are widely used for isotropic

polycrystalline metallic materials (e.g. Weber and Anand, 1990).
20 Which we expect our strain-softening model to capture.
21 Here one should bear in mind that the initial-value of the state variable s would, in general, no longer be s0.
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H ¼ HðXÞ an arbitrary time-independent invertible tensor field, we may assume, without loss in generality,

that

FpðX; 0Þ ¼ FpTðX; 0Þ ¼ VpðX; 0Þ:

Appendix B. The constraint Wp 
 0

We now give a formal argument demonstrating that, granted certain assumptions, a fairly general theory

that allows for Wp 6¼ 0 would result in Wp small compared to Dp. A theory that accounts for Wp would

have (3.2) replaced by

grad~vv ¼ eLLe þ FeðeDDp þfWWpÞFe�1

and a term of the form J�1Mp �fWWp would be needed in (3.5). Then

Tp � eDDp þMp �fWWp ¼ JðFeTTFe�TÞ � ðeDDp þfWWpÞ

would replace (3.13) and the local dissipation inequality (4.2) would have an additional term �Mp �Wp on

the left side. Further, a constitutive relation for Mp would be needed in (5.1), and Tp, Mp, and ni would

depend also on Wp. Then (5.9) would have an additional term

2skw
o �ww
oBp B

p

 !
�Wp

on the right side, and this leads to (5.11) augmented by the relation

Mp ¼ 2skw
o �ww
oBp B

p

 !
þ YMðHÞ;

where H depends also on Wp. The flow rule (6.2) would be supplemented by

SM � SM
back ¼ YMðHÞ;

with

SM ¼ skwðJFeTTFe�TÞ ¼ skwðCeTeÞ; SM
back ¼ 2skw

o �ww
oBp B

p

 !
; ðB:1Þ

and the dissipation inequality (5.12) would have the form

Y0ðHÞ �Dp þ YMðHÞ �Wp P 0:

For special constitutive equations of the form discussed in Section 7, the relations (7.6) and (B.1)2 yield

SM
back 
 0;

and this leads to a pair of relations

Dp ¼ k1ðKÞjS0 � lBp
0 j

ð1�mÞ=mðS0 � lBp
0Þ;

Wp ¼ k2ðKÞjSMjð1�mÞ=m
SM:
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Thus

jWpj
jDpj ¼

k2ðKÞ
k1ðKÞ

jSMj
jS0 � lBp

0 j

� �1=m

: ðB:2Þ

If we restrict attention to small elastic stretches as discussed in Section 8, then (8.3) and (8.4)2 yield

S0 ¼ OðjEejÞ. On the other hand, since Ce � 1þ 2Ee, (6.5) and (B.1)1 imply that

SM � ð1þ 2EeÞTeð1� 2EeÞ ¼ OðjEej2Þ:

If we assume that S0 � lBp
0 is of the same order as S0, which would seem reasonable, at least under

monotone loading, then

S0 � lBp
0 ¼ OðjEejÞ; ðB:3Þ

and, by (B.2),

jWpj
jDpj ¼ OðjEej1=mÞ:

Thus, granted the foregoing assumptions, for m small and k1 and k2 of O(1), we would expect

Wp to be small compared to Dp:
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